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Hydrodynamic forces on a submerged circular 
cylinder undergoing large-amplitude motion 
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The hydrodynamic problem of a circular cylinder submerged below a free surface and 
undergoing large-amplitude oscillation is investigated based on the velocity potential 
theory. The body-surface boundary condition is satisfied on its instantaneous position 
while the free-surface condition is linearized. The solution is obtained by writing the 
potential in terms of the multipole expansion. Various interesting results associated 
with the circular cylinder are obtained. 

1. Introduction 
In the prediction of wave-induced motion of a marine structure, it is common to 

assume that the parameters under investigations are small. The result is the well-known 
linearized velocity potential theory which neglects all nonlinear terms from the 
equations and the boundary condition is imposed on the mean position. More recently 
attempts have been made to solve the exact nonlinear problem for an ideal fluid flow. 
Although significant progress has been made, the work in this area is still at its early 
stage and the results obtained so far are not entirely satisfactory. The major difficulty 
is the existence of the free surface, on which not only is the boundary condition 
nonlinear, but its position is unknown before the solution is found. Because of this 
difficulty, no analytical solution has been found even for the simplest geometry and it 
is unlikely that in the foreseeable future any such solutions can be found. 

If an analytical solution beyond the linearized potential theory is desired, a more 
realistic approach is to retain the linearized free-surface condition but try to satisfy the 
exact rigid body-surface condition. Indeed, this not only achieves mathematical 
simplification but also has practical significance. For a deeply submerged body 
undergoing large-amplitude oscillation, its free-surface condition may still be linearized 
but its body-surface condition has to be satisfied on its exact position. 

We shall consider here a submerged circular cylinder undergoing large-amplitude 
motion in water of infinite depth. If its submergence h is much larger than its radius 
a, the velocity potential on the free surface will be of order a/h  provided that the 
vertical oscillation does not reduce the submergence significantly. Thus neglect of the 
product terms in the free-surface conditions will lead to an error of order ( ~ / h ) ~ .  The 
velocity potential for the circular cylinder can be written in terms of the well-known 
multipole expansion. The multipole expansion was initiated by Ursell (1949) who 
considered the linearized problem of a semicircular cylinder on the free surface. Ursell 
(1950) later used this method for a submerged circular cylinder, and it was extended 
by Ogilvie (1963) to include some nonlinear results. For finite water depth Yu & Ursell 
(1961) considered a semicircular cylinder on the free surface. Evans & Linton (1989) 
and Wu & Eatock Taylor (1990) also used the multipole expansion for a submerged 
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circular cylinder in finite water depth when investigating the reduction of wave 
intensity and the second-order wave diffraction force respectively. However there is a 
significant difference when the multipole expansion is applied to the present problem. 
Based on the linearized theory, a cylinder oscillating with frequency w only generates 
one wave with the same frequency. For the present problem, the cylinder will generate 
an infinite number of waves with frequencies no (n = 1,2,. . .). Correspondingly the 
procedure must be modified. 

The investigation has two purposes other than as an analytical solution. Firstly, it 
will give some insight into the differences between the results obtained from the 
linearized body surface condition and the exact body surface condition. Secondly, the 
results obtained can be used to validate the computer programs based on this 
mathematical model which have been popular in the past few years (e.g. Lin & Yue 
1990 and Ferrant 1990). 

2. Governing equation 
We consider the problem of a submerged circular cylinder of radius a undergoing 

sinusoidal oscillation with frequency w .  We define a coordinate system 0, xz so that the 
origin is located on the undisturbed free surface and z points upwards. We also define 
a polar coordinate system (r,  6) so that the origin is fixed at the centre of the cylinder. 
These two systems are related by the following relationship: 

where h is the mean submergence, q, and q3 are the amplitudes of the horizontal motion 
and the vertical motion respectively; and y, (j = 1,3) are the corresponding initial 
phases. It is assumed that at no stage will the cylinder emerge from the water, i.e. 
q3+a < h. 

Based on the assumption of velocity potential theory, the potential @ satisfies the 
following equations : 

in the fluid domain; 
V2@ = 0 (2) 

on the free srirface S,  or z = 0, where g is the acceleration due to gravity; and 

a@ 
- = - w(ql sin a1 n, + 
an 

sin a3 n3) 

on the body surface So or r = a, where n is the inward normal of the body surface and 
n1 = - sin 8 and n3 = - cos 19 are its components in the x- and z-directions respectively. 
As discussed in the introduction, we have linearized the free-surface boundary 
condition but retained the exact body-surface condition. The radiation condition at 
x = + cc ensures that waves generated by the body propagate outwards. 

We may define 
@ = - wql Re (4, eiY1) - wq3 Re (q53 ei7'3), (4) 
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in which $j satisfies (2), (3a) ,  and 

on the body surface. When the body-surface condition is linearized, q51 is due to the 
horizontal motion only and q53 due to the vertical motion only. As one would expect 
here, both $, and q53 depend on the horizontal and vertical motions. Furthermore, 
when the body-surface condition is linearized, the time factor can be decoupled from 
the potential, or $&x,z, t )  = ~ j ( x , ~ ) e i u t .  But this does not apply in ( 5 )  because r is a 
function of time as seen from (1). 

3. The multipole expansion 

expansion 
To solve the above problem, we write the potential in terms of the multipole 

m a ,  eim8+iswt 

$1 = m=l c s=-m x A L U ~ "  [ T + p m ( r ,  8, l)] 

m m  e-imO+iswt 

+ c c  am[ rm +fm(r,o, t )] .  (6) 
m=l s=-m 

The first terms in the square brackets are for the circular cylinder in an unbounded fluid 
domain while the second terms are introduced to satisfy the free-surface condition. 
Since when 101 < 

- - 2 km-l exp [ - k(z + h) f ikx + klj3 cos a3 - (+ ) ikvl cos all dk (7) 
(m- l)! 

and (Abramowitz & Stegun 1965) 
a, 

exp [kv3 cos a,] = X Zp(kv3) eipas, 
p--m 

m 

exp [( f ) iky, cos a,] = (+i)PJ,(ky,) eipal, (8 b) 
p=-m 

where Jp and Z, are the Bessel functions and the modified Bessel functions respectively, 
we have 

,&imB+iswt 1 m m  
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If we now write 

G .  X. Wu 

and invoke the free-surface boundary condition in (3a) ,  we obtain 

k +  (p + q+s)'v A(k) = k -  ( p  + q + s)2v' 

where v = 02/g .  The potential in (6) can then be written as 

The integration route L is from zero to infinity. As the radiation condition only allows 
the outgoing wave, the integration route passes over those singularities with p + q + 
s > 0 and passes under those with p + q + s < 0. 

To impose the body-surface condition we use (see (8)) 

ek(z-h)*ikx = exp [ - 2kh + r ekiO+ ky3 cos a3 f iky, cos a,] 

g kn,.;kinO m m 

C ( f i)q Zp(ky3) J,(ky,) eipaafiQal. (1 1) - - e-Zkh 

n=o p--m Q=-m 

Equation (10) becomes 

x (-i)Q1iqexp[ipa,+iqal+ipla,+iql a,+isotl~(m,n,p,  q,pl, q l , s + p + q ) } ,  (12) 

where 
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Invoking (9, we obtain for 

Comparing (14) with (15), we find = -;i8(m- 1)6(s- 1) .  (15b) 

AS,(3) = iA;(l), Bm(3) = -iPm(l), (16a, b) 
where j in A;((j) and B;(j) indicates that the coefficients correspond to &. 

4. The hydrodynamic force 
The solution of (14) and ( 1 5 )  can be obtained by truncating the infinite series at a 

finite number, depending on the accuracy required. When the solution has been found, 
the hydrodynamic force can be obtained by integrating the pressure obtained from 
Bernoulli's equation over the body surface : 

where p is the density of the fluid and the hydrostatic term gz has been neglected. 4 
in the above equation is the force in the horizontal direction and 4 is the force in the 
vertical direction. The derivative with respect to time cannot be simply taken outside 
of the integral. In fact we should use 

where (1) has been used. If we further use Stokes theorem, 
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where (xl, x,) = (x, z) ,  equation (18) may also be written as 

which is identical to equation (4.87) of Newman (1977) derived from the transport 
theorem. Substituting (18) into (17), we obtain 

- $p Is,, V(@ + wyl sin al x + wy3 sin a3 z )  . V( @ + wvl sin a, x + wy, sin a, z )  nj dS. 

(21) 
On the body surface, the expression for q5j can be simplified by substituting (14) or 

(15) into (12). We have 
m m  

$1 = 2 C [AS,( 1) eims+ B",( 1) ecimq eiswt - ia sin 8 eiwt +At) (22 a) 
m=l  s=-m 

m m  
and 

$, = 2 C. [A~(3)eim8+B~(3)e-im8]eis~t-iacos8eiwt+g(t), (22b) 

whereflt) and g(t) arise from the term n = 0 in (12). Substituting (22) into (4), we 
obtain 

m=l s=--m 

m m  

@ = 2 Re C C (CS, eim8 + DL ecim@) eiswt -way, sin 6' sin a1 -way, cos 8 sin a,, (23) 
m=l  s=-m 

whereflt) and g(t) have been dropped since they make no contribution to the force, and 
c;=- wylAk(l)eiY1-wy,Ak(3)eiY3 = -w(y1eiY1+iy,eiY3)AS,(l), (24a) 

DS, = - wvl Bk( 1) eiY1 - wy3 BL(3) eiY3 = - w(vl eiY1 - iv, eiY8) Pm( 1). (24b) 
From (21), (3b) and (23), we obtain 

F * - - -pa- :t[@nid8 

a 
2a ae ae -& 2 (@ + wy, sin a1 x + wy3 sin a3 z )  - (@ + wyl sin a1 x + wy, sin a, z )  nj d8 

m=l s=-m 

U 
= - pnw2a2yj cos aj - 2pa - Re C. (CL eims + Ds m ecims) eiswt nj d8 

dt J o  m=ls=-m 
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where the overbar indicates the complex conjugate. This gives 
m 

4 = - pnw2a2rl cos a1 + pn Re 2a sw( - C; + D:) eiswt 
S=-" 

1 s=-m 

i "  m 

am=, sl=-co 
+- C x [ m ( m + l ) ( C L f ~ D % - D ~ ~ 1 , C ~  

- Cgsi Dk+l + Dzsl Cz+l + C'fi cz - Dz:i a% - CZsi ck+l 
+ D",'"l D%+,)]}, (27 4 

4 ( s )  = - ipnw2a2rj, eisyYs[S(s - 1) + 6(s + l)] + pn 2aisw( C: + D:) i 
1 "  " 
a m=l s1=-m 

+- 2 x [m(m+ l)(CLt;Dz+DKfi Cg 

+ Cs,-S, Dz+l + Ds,-S, C%+l + Cz;i cz + D z a  D2 + C F  Cz+, 

+ D2,'"l (27 b)  

The horizontal steady force may also be related to the asymptotic expansion of the 
potential at infinity. We add (18) to (20) and substitute the result into (17). This gives 

Using the equation derived by Ogilvie & Tuck (1969). 

if a$-/an = 0 on So, we have 
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where S ,  comprises two vertical lines at x = f co respectively. Using ( 3 4 ,  we obtain 
for the horizontal force 

. I  

Let T = 2x/w, we then have 

It may seem the derivation of (30) is unnecessary, since this result is well known from 
momentum conservation (e.g. Mei 1982, eq. 10.1 1, p. 368). But care is needed here. The 
derivation from momentum conservation is based on the fact that all boundary 
conditions are satisfied exactly. Here, we have used the exact body-surface condition 
and linearized free-surface condition. Although, (30) turns out to be identical to that 
derived from momentum conservation, that is not guaranteed when inconsistent 
conditions are used. Indeed, a well-known example is what was called by Eggers (1979) 
Gadd's paradox the in wave resistance problem of a floating body advancing in 
otherwise calm water. Because of the inconsistency of the body-surface and the free- 
surface conditions, the integration of the pressure over the body surface does not give 
the same force as that obtained from energy conservation. Thus, the derivation of (30) 
here is not trivial. 

Let x + + co in (10). Taking into account (4) and (24), we have 
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where sgn (s) = 1 if s > 0 and sgn (s) = - 1 if s < 0. Equation (31) may also be written 
as 

a = Re{ 5 [fi(s)es2vz+is2u2.-iswt +fz(s) es2yr-is’vx+iswt 

s=1 

where 

5. Some special cases 

results but also may be used as a partial check on the present formulation. 
We shall consider some special cases, which will not only give some very interesting 

5.1. The linear problem 
When q1 and 7, are sufficiently small, we only need to keep their linear terms. Because 
of (4), we can take rl = v3 = 0 in the expansion of q$. Since A(0) = I,,(O) = 1 and 
J,(O) = I,(O) = 0 if In1 > 0, we only need to retain the terms of p = p1  = q = q1 = 0 in 
(14) and (15). The equation for q51 becomes 

m am+n-l m 
a 

m 
a 

--AS,+ 2 

--Bsm+ c 
F(m, n, 0 ,  0,  0, 0, s) AS, = -$(m - 1) S(s- l), (35a) 

F(m, n, 0, 0, 0, 0, s) B”, = @(m - 1) 6(s - 1). (35 b) 

n-.l ( m  - l)! (n - l)! 

n-l (m - l)! (n - l)! 

m am+n-l 

We notice that the equations for s = 0, 2 1, . . . respectively are completely uncoupled. 
In particular, (35) gives A& = l?, = 0 if s + 1 and it becomes the governing equation 
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for the linear problem when s = 1.  The comparison of (35 a)  and (35 b) also shows that 
A; = -B;. This suggests q41 in (10) is antisymmetric about 8 = 0 or x = 0, which is 
well known. 

The same analysis can also be applied to $3 by replacing the right-hand sides of (35 )  
with those in (15). The difference is that in this case A; = BL and q53 is symmetric. 

5.2. Purely vertical motion 
When ql = 0, we only need to consider q53 because of (4). For the reason discussed 
above we only need to retain the terms of q = q1 = 0 in (15). We have 

m amtn-l m m  

n=l (m - l ) !  (n  - l)! u=-m p=-m 
---A;+ m C C C ei(s-u)73 F(m, n , p ,  0, s-u -p,  0, u + p )  A: 

a 

= -&3(m- 1) &(s- l), (36a) 
m am+n-l m m  

n=l (m- l)!  (n- l)! u=-m p=-m 

m 
U 

--B;+ c x x ei(s-u)7'3 F(m, n,p,  0, s - u -p ,  0, u + p )  B: 

= -$3(m- 1 )  6(s- 1). (36b) 

These two equations are identical, which implies A; = B"?. Thus q53 in (10) is symmetric 
about 8 = 0 and 4 = 0 in (25), which is hardly surprising for a symmetric cylinder 
undergoing purely vertical motion. 

5.3. Purely horizontal motion 
When q3 = 0, we only need to retain the terms of p = p1 = 0 in (14). We have 

x (- l),+,+, i e  's-u i(s-u)B; = @(m - 1 )  6(s - 1 ) .  (37 b) 

It is evident here that AS, = (- 1)s B",. Substituting this into (25), we obtain E;(s) = 0 
when s is even and &(s) = 0 when s is odd. In particular &(O) = 0 reflects the physical 
fact that a cylinder symmetric about x = 0 which oscillates sinusoidally in the 
horizontal direction does not give steady force in the horizontal direction. 

5.4. Circular motion 
When q1 = r3 = q and y3 = y1 &in = y, the cylinder moves in a circular path with the 
centre at (0, -h). In particular, when the positive sign is taken, the motion is clockwise 
and when the negative sign is taken it is counterclockwise. From (24), we notice that 
the former corresponds to CS, = 0 and the later corresponds to D; = 0. For the linear 
problem such a result leads to the conclusion that a circular cylinder moving in a 
circular path only radiates the wave in one direction (Ogilvie 1963). Take clockwise 
motion as an example. We havef,(s) = gl(s) = 0 in (33a, c)  because C8, = 0. For the 
linear problem, we only keep the term corresponding to p = q = 0 and 0; = 0 if 
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s + 1 (see §5.1), which further gives g,(s) = 0 in ( 3 3 4 .  Thus we only have f,(s) in 
(32), which implies that there is a wave only at x = + 00. Similarly if the motion is 
counterclockwise, we only need to retain g,(s) and it only radiates the wave to x = - 00. 

Further interesting results may be obtained from (34). For clockwise motion the steady 
horizontal force is always negative while for counterclockwise motion, the force is 
always positive. The magnitudes of the forces in both cases are the same. 

For the problem satisfying the exact body-surface condition, many of the above 
conclusions are no longer valid. We shall give a detailed discussion in Appendix A 
where it shows that for circular motion the multipole expansion has a much simpler 
form. Here we shall confirm an apparent physical result based on the present 
mathematical model (exact body-surface boundary condition and linearized free- 
surface condition) : when the circular motion changes from clockwise to counter- 
clockwise only the horizontal forces (not only the steady force) change sign while 
the vertical forces remain the same. We may write (14b) as 

x (- l)nei(p+p1)Y3BU, = !$(m- 1)6(s- 1) (38a) 

for clockwise motion ( y l  = y,-$). We do not need to consider -A; because of (24a). 
Similar we may write 

a? am+n-l 

$ 5 2 5 E;(mYn,P7q,Pl,q,Yu+P+q) 
m 

---A;+ 
a n=l(m-l)!(n- l)!u=--cop=--mq=-copl=-m 

x(-l)qei(p+pl)~~A; = -~6(m-1)6(s-l) (38b)  

for counterclockwise motion (y l  = ?,+in) and disregard BL. Comparing (38a) and 
(38 b), we find the solutions of these two equations only differ by a sign. From (24), we 
obtain 

DS, (clockwise) = C6, (counterclockwise) = - 2iwy eiYs AS,( I), 

DL (counterclockwise) = Ck (clockwise) = 0, 

4 (clockwise) = - 4 (counterclockwise), 

I;3 (clockwise) = 4 (counterclockwise). 

(39 a) 

(39 b )  

(40 a> 

(40 b) 

where the AS, are the solution of (386). Substituting (39) into (27), we obtain 

In fact (40) is not limited to the cylinder undergoing circular motion only. The 
relationships are valid for a motion and its mirror image about x = 0, which is evident 
on physical ground. Mathematically, the mirror image means that y1 is replaced with 
yl+n, while there are no restrictions on ql, y3, y1 and y3. As above, the comparison 
of these two cases will give 

(41 a, b )  Ak(1) Iyl+n = - B S , ( I )  Iyl, E(1) lyt+n = -A",yJ lyl* 

Using the above equations in (24) then the result in (27), we obtain 

Before we discuss the numerical results, it is also interesting to confirm 
mathematically another evident physical point: the magnitudes of the forces in (27) 
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(4 
Ts/a 
0 
0.20 
0.40 
0.60 
0.80 
1 .OO 
1.25 
1.50 
1.75 

(b) 
T3la 
0.00 
0.20 
0.40 
0.60 
0.80 
1 .oo 
1.25 
1.50 
1.75 

c3(0) 
0 
0.0039 
0.0081 
0.0127 
0.0181 
0.0247 
0.0360 
0.0531 
0.0838 

C,(O) 

0 
-0.0049 
- 0.0099 
-0.01 51 
-0.0205 
- 0.0262 
-0.0340 
-0.0424 
-0.0510 

C,(l) 

1.1114 
1.1122 
1.1148 
1.1193 
1.1262 
1.1361 
1.1545 
1.1838 
1.2359 

c3( 1 ) 
0.8781 
0.8774 
0.8754 
0.8720 
0.8672 
0.8608 
0.8505 
0.8378 
0.8231 

0 
0.0173 
0.0353 
0.0545 
0.0761 
0.1011 
0.1399 
0.1927 
0.2709 

c3(2) 
0 
0.0100 
0.0203 
0.03 11 
0.0427 
0.0554 
0.0734 
0.0943 
0.1192 

c3(3) 
0 
0.001 1 
0.0044 
0.0103 
0.0192 
0.0320 
0.0554 
0.09 13 
1.1464 

c3(3) 

0 
0.0005 
0.0021 
0.0048 
0.0088 
0.0143 
0.0237 
0.0365 
0.0541 

TABLE 1. Purely vertical motion with h = 

d 4 )  
0 
0.0001 
0.0005 
0.0016 
0.0040 
0.0084 
0.0182 
0.0356 
0.0640 

4 4 )  
0 
0 
0.0002 
0.0006 
0.0015 
0.003 1 
0.0065 
0.0121 
0.0214 

c3(5) 

0 
0 
0 
0.0002 
0.0007 
0.0018 
0.0049 
0.01 14 
0.0224 

4 5 )  
0 
0 
0 
0.0001 
0.0003 
0.0006 
0.0017 
0.0038 
0.0082 

c3(6) 
0 
0 
0 
0 
0.0001 
0.0003 
0.0012 
0.0034 
0.0080 

Cd6) 
0 
0 
0 
0 
0 
0.0001 
0.0004 
0.0012 
0.0032 

c3(7) 
0 
0 
0 
0 
0 
0.0001 
0.0003 
0.0012 
0.0049 

c3(7) 
0 
0 
0 
0 
0 
0 
O.OOO1 
0.0004 
0.0012 

3a. (a) vu = 0.1, (b) vu = 1.0 

depend only on the difference of the initial phases y3 - y1 rather than them individually. 
Taking (14a) as an example we have, by noticing q1 = s-p-p, -4-u, 

a, am+n-l m m m m  m 
a n=l (m- l)! (n - l)! p=-ao 4=-m p,=-m 

---AS,+ c c x c z F(m,n,p ,q ,p , ,q , ,u+p+q)  

x (_i)qi~1ei(~+~i)(~,-~i)  ~uei(s-U)~i = -$a(m- l)a(s- 1). 

This equation shows that A&exp[-i(s- l)yl] depends only on ys -y l .  A similar 
conclusion applies to Em( 1) exp [ - i(s - 1) yl]. We now write (24) as 

(43 a) 
(43 b) 

Using these results in (25), we find that y1 only affects the phases of the forces but not 
their magnitudes. This conclusion may have been easily obtained by replacing t with 
i-y1/o in (1). The above exercise is relevant to the beginning of $5.  

C" = - u[q + iq ei(y,-~i)] As e-i(s-1)Yi eiSY, 
DS = - w[q, - iq, ~ ~ ( Y , - Y I ) ]  B& e-i(S-1)Yi 

m 1 3  m 

m 

6. Numerical results 
The numerical solution is obtained by truncating the infinite series in (1) at m = M 

and s = S. Although no attempt is made to rigorously prove the convergence of the 
series at M - t  co and S+ co, the numerical investigations indicate that it converges very 
rapidly. For the results obtained below, we have taken M = 5 and S = 10. The Bessel 
functions have been calculated using their integral representations, as using the 
recurrence relations may lead to less accurate results when the order is high. 
Computations are made on a DECstation 5000. Priority is given to accuracy at the 
expense of computer time, since the program is not for general geometries. 
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(4 
%/a  
0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.25 
1 S O  
1.75 

c m  
0 
0.0039 
0.0079 
0.0120 
0.0163 
0.0208 
0.0269 
0.0333 
0.0400 

CAI) 
1.1114 
1.1115 
1.1120 
1.1127 
1.1136 
1.1144 
1.1150 
1.1147 
1.1130 

c3(2) 
0 
0.0142 
0.0285 
0.0430 
0.0577 
0.0728 
0.0922 
0.1118 
0.1314 

c1(3) 
0 
0.0007 
0.0028 
0.0064 
0.01 13 
0.0177 
0.0275 
0.0392 
0.0526 

c3(4) 
0 
0 
0.0003 
0.0009 
0.0021 
0.0040 
0.0076 
0.0129 
0.0198 

cA5) 
0 
0 
0 
0.0001 
0.0003 
0.0008 
0.0019 
0.0039 
0.0675 

4 6 )  
0 
0 
0 
0 
0.0001 
0.0002 
0.0005 
0.001 1 
0.0022 

(b) 
%/a  %(O) ci(l) cs(2) ci(3) c3(4) Ci(5) cs(6) 
0 0 0.8781 0 0 0 0 0 
0.20 -0.0049 0.8784 0.0031 0.0001 0 0 0 
0.40 -0.0098 0.8793 0.0060 0.0006 0 0 0 
0.60 -0.0146 0.8807 0.0086 0.0012 0.0001 0 0 
0.80 -0.0193 0.8828 0.0108 0.0021 0.0003 0 0 
1.00 -0.0239 0.8856 0.0125 0.0031 0.0005 0.0001 0 
1.25 -0.0293 0.8899 0.0138 0.0045 0.0010 0.0001 0 
1.50 -0.0343 0.8952 0.0141 0.0058 0.0015 0.0003 0 
1.75 -0.0387 0.9011 0.0134 0.0070 0.0020 0.0004 0.0001 

TABLE 2. Purely horizontal motion with h = 2a. (a) va = 0.1, (b) va = 

c1 (7) 
0 
0 
0 
0 
0 
0 
0.0001 
0.0003 
0.0007 

~ ~ ( 7 )  
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 .o 

We may write (26) as 

where I$ are calculated from (27), and equation (34) is used as a partial check. Table 
1 gives some results for the cylinder undergoing purely vertical motion. The cj(s) are 
the non-dimensional force amplitudes and are defined as 

c,(O) = Re [F,(0)]/pw2nu2r3 and cj(s) = Iq(s) +e( -s)I/pw2nu2q3 if s > 0. 

As discussed in $5.2, cl(s) = 0 in this case and is therefore omitted from the table. Table 
2 gives the results for the cylinder undergoing purely horizontal motion. The cj(s) are 
defined as 

c3(0) = Re [ & ( O ) ] / ~ W ~ A U ~ ~ ,  and cj(s) = I$(s) + $( -s ) ( /pw2m2y, .  

Note that c1(2s) = c2(2s+ 1) = 0 (s = 0, 1, . . .), as discussed in 55.3. For the linearized 
problem it is well known the 141 due to the vertical motion is the same as 141 due to 
the horizontal motion, which correspond to 7, = 0 in table 1 and rl = 0 in table 2 
respectively. When the amplitude of oscillation increases, this identity is no longer 
valid. From both tables 1 and 2, we see that the forces are dominated by that obtained 
from the linearized theory. In fact if we examined the assumption of the present 
formulation more carefully, the results should have been expected. For a cylinder in an 
unbounded fluid domain, the linear solution can be exact if the coordinate system fixed 
in space is replaced with that fixed on the cylinder. In particular, the force obtained 
from the linearized theory is identical to that obtained from the solution satisfying the 
exact body-surface condition, which only contains the term 4(1) in (26). All other 
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(4 

0 
0.20 
0.40 
0.60 
0.80 
1 .oo 
1.25 
1.50 
1.75 

71la 

(6) 
? /a  
0 
0.20 
0.40 
0.60 
0.80 
1 .oo 
1.25 
1 S O  
1.75 

Cl(0) 
0 

-0.0140 
- 0.0280 
-0.0419 
-0.0558 
- 0.0694 
-0.0853 
- 0.0984 
-0.1055 

c3m 
0 

-0.0013 
-0.0034 
-0.0070 
- 0.0130 
- 0.0226 
-0.0413 
-0.0698 
- 0.1073 

Cl( 1) 
0.8988 
0.8971 
0.8923 
0.8843 
0.8734 
0.8599 
0.8399 
0.8173 
0.7930 

C3U) 
0.8988 
0.8975 
0.8934 
0.8859 
0.8741 
0.8566 
0.8237 
0.7753 
0.7132 

Cl(2) 
0 
0.0123 
0.0252 
0.0392 
0.0548 
0.0724 
0.0978 
0.1270 
0.1593 

c,(2) 
0 
0.0123 
0.0250 
0.0386 
0.0538 
0.0717 
0.0999 
0.1372 
0.1827 

4 3 )  
0 
0.0006 
0.0027 
0.0062 
0.0117 
0.0195 
0.0333 
0.0527 
0.0779 

c3(3) 
0 
0.0006 
0.0026 
0.0062 
0.0116 
0.0194 
0.0341 
0.0560 
0.0845 

cA4) 
0 
0 
0.0003 
0.0009 
0.0023 
0.0049 
0.0105 
0.0199 
0.0334 

c3(4) 
0 
0 
0.0003 
0.0009 
0.0023 
0.0049 
0.0107 
0.0206 
0.0344 

4 5 )  
0 
0 
0 
0.0001 
0.0004 
0.001 1 
0.0030 
0.0066 
0.0119 

4 5 )  
0 
0 
0 
0.0001 
0.0004 
0.0011 
0.0030 
0.0067 
0.0119 

c m  
0 
0 
0 
0 
0.0001 
0.0002 
0.0007 
0.0019 
0.0033 

c m  
0 
0 
0 
0 
0 
0.0002 
0.0007 
0.0019 
0.0035 

CA7) 
0 
0 
0 
0 
0 
0 
0.0001 
0.0004 
0.0006 

4 7 )  
0 
0 
0 
0 
0 
0 
0.0002 
0.0005 
0.0013 

TABLE 3. Circular motion with h = 3a and va = 0.5. (a) Horizontal force, (b) vertical force 

terms in (26) are due to the free-surface effect. As it is assumed that the disturbance on 
the free surface is small and linearization can still be applied, the results in the tables 
are therefore not too surprising. 

For vertical motion when ~ ~ / a  > 1, the nonlinear contribution increases rapidly and 
begins to show its presence. This is mainly because the motion in this case alters 
submergence substantially during the oscillation. 

Table 3 gives the results for clockwise circular motion. One notable feature in this 
case is that there is a steady horizontal force. But the force is still dominated by that 
obtained from the linearized theory and the other components only begin to show their 
presence at large amplitude. 

7. Conclusions 
(i) A cylinder oscillating at frequency w and with large amplitude will in general 

generate an infinite number of waves with frequencies nw (n = 1,2, . . .) and propagating 
in both directions. 

(ii) The purely horizontal motion of a submerged circular cylinder generates vertical 
forces with frequencies 2nw and horizontal forces with frequencies (2n + 1) w (n  = 0, 1, 
2,. . .). 

(iii) The large-amplitude circular motion of a submerged circular cylinder generates 
waves propagating in both directions, which differ from the well-known conclusion for 
small-amplitude circular motion (fully linearized theory). 

(iv) Further, from Appendix B, a submerged circular cylinder undergoing large- 
amplitude motion reflects an incoming wave, which is also different from the results of 
the linearized theory. 
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(v) If the motion of the cylinder is not sinusoidal but still periodic, the method in this 

paper can still be used. However, the coefficients of the Fourier series in (8) may not 
be written in terms of the Bessel functions. Instead they may have to be calculated 
numerically. Consequently, Jp and Ip in those related equations may have to be 
replaced by numerical results. 

The financial support by Cray Research (UK) Ltd is gratefully acknowledged. 

Appendix A. Multipole expansion for the circular motion 

simplified. Without losing generality, we assume y = 0. Equation (3 b) becomes 
For the circular motion discussed in $5.4, the multipole expansion can also be 

a@/ar = -w~sin[wt--(f)8], (A 1) 

@ = -wyRe($) (A 2) 

(A 3) 

where the signs + and - correspond to clockwise and counterclockwise motions 
respectively. We may define 

where a$/&. = -ieirwt-(k)@ll. 

q5 can still be written in terms of (6), but instead of using (8), we use 

We notice that a = wt for clockwise motion and a = --wt for counterclockwise motion. 
Equation (1 0) becomes 

1 "  m m  +- c eipwt+iswt  f 
m=l s=--m (m - I)! p-0 P! 

2 
p + p - 1  + (' ek(z-h)+ikz dk IL k - (s +p)'v 

for counterclockwise motion, and 

for clockwise motion. Similarly, we may write (1 1) as 

p-0 P! 
ek(z-h)+ikx = e-2kh 

n=o 

Equations (14) become 

BL = 0 (A 7b)  
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for counterclockwise motion, and 
AS, = 0, 

for clockwise motion. Comparing (A 7 a )  with (A 8b), we have 
BS, (clockwise) = A; (counterclockwise) (A 9) 

which has been shown in $5.4 (equations (36)). 
Let x +- i- co and, in view of (A 9), (A 5 a) for counterclockwise motion becomes 

m 

4 = xf(-s)exp(s2vz+is2vx-isut), x++co, (A 10a) 

4 = - Cf(s)exp(s2vz+is2vx+isut), x + - m ,  (A lob) 

s-1 

W 

s-1 

and (A 5 b) for clockwise motion becomes 
m 

# = - x f ( s )  exp (s2vz - L2vx + isot), x + + co, (A l l a )  
s-1 

m 
# = xf(-s)exp(s2vz-is2vx-iswt), x+-co, (A l l b )  

s=1 

where 

From the above results, there is no evidence to suggest that f ( - s )  = 0. Thus we are 
unable to conclude that the circular motion generates waves only in one direction as 
in the fully linearized theory. Indeed in the numerical calculation for the results in table 
3, it is observed thatfl-3) is not zero. 

Appendix B. Wave diffraction 
For a deeply submerged cylinder, a large-amplitude motion is unlikely to be 

generated by surface waves. The body-surface condition in the diffraction problem can 
normally be imposed on the mean position. Suppose that the large-amplitude motion 
is generated by other causes and the body-surface condition has to be imposed on the 
instantaneous position. The wave diffraction will then be affected by the motion of the 
cylinder. 

The incident potential @& due to a regular incoming wave may be written as 

in which + sign corresponds to a wave from the right (x = + co) and - to a wave from 
the left (x = - 00). If we write the diffraction potential as 0, = Re (&), we have the 
body-surface condition 

a$,/an = -a+,/an. (B 2) 
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The multipole expansion for q5d is the same as that in (10) but the coefficients are 
obtained from the following equation : 

B; = 0, 

A; = 0, 
if the wave is from the right and 

if the wave is from the left, where q1 = s -p -q -p , -u .  For the fully linearized 
problem, a well-known result for a circular cylinder is that it does not reflect (Dean 
1948; Ursell 1950). But it is not evident here that we can draw such a conclusion since 
there is no explicit indication in (B 3) or (B 4) that we only need to retain the terms with 
p + q + s > 0 in (10). One may speculate that since the zero reflection of the linearized 
theory is valid for any submergence it should not be changed by the oscillation of the 
cylinder. But there is a fundamental difference between these two cases. For the 
linearized theory, the whole problem becomes steady if the time factor exp ( id)  is taken 
out. Although the zero reflection is valid for any submergence, the submergence is a 
constant once given and does not vary with time. For the present problem, the 
submergence does vary with time and so the above reasoning does not apply to this 
case. 

REFERENCES 
ABRAMOWITZ, M. & STEGUN, M. 1965 Handbook of Mathematical Functions. Dover. 
DEAN, W. R. 1948 On the reflection of surface waves by a circular cylinder. Proc. Camb. Phil. SOC. 

44,48-91. 
EWERS, K. W. H. 1979 A method for assessing numerical solution to the Neumann-Kelvin 

problem. Proc. Workshop on Ship Wave Resistance Computations, Maryland, USA. David Taylor 
Naval Ship Research and Development Center. 

EVANS, D. V. & LINTON, C. M. 1989 Active devices for the reduction of wave intensity. Appl. Ocean 
Res. 11, 2632. 

FERRANT, P. 1990 A coupled time and frequency approach for nonlinear wave radiation. Eighteenth 
Symp. on Naval Hydrodynamics, University of Michigan, pp. 67-83. National Academy Press. 

LIN, W. M. & Yve, D. 1990 Numerical solutions for large-amplitude ship motions in the time 
domain. Eighteenth Symp. on Naval Hydrodynamics, University of Michigan, pp. 41-65. National 
Academy Press. 

MEI, C. C. 1982 The Appiied Dynamics of Ocean Surface Waves. Wiley-Interscience. 
NEWMAN, J. 1977 Marine Hydrodynamics. MIT Press. 
OGILVIE, T. F. 1963 First and second order forces on a cylinder submerged under the free surface. 

J.  Fluid Mech. 16, 451-472. 
3 F L M  254 



58 G. X. Wu 
OGILVE, T. F. & TUCK, E. 0. 1969 A rational strip theory for ship motions. Part 1. Rep. 012. 

URSELL, F. 1949 On the heaving motion of a circular cylinder on the surface of fluid. Q. J .  Mech. 

URSELL, F.  1950 Surface waves on deep water in the presence of a submerged circular cylinder. Proc. 

Wu, G. X. & EATOCK TAYLOR, R. 1990 The second order diffraction force on a horizontal cylinder 

Yu, Y. S. & URSELL, F. 1961 Surface waves generated by an oscillating circular cylinder on water 

Department of Naval Architecture and Marine Engineering, University of Michigan. 

Appl. Maths 2, 218-231. 

Camb. Phil. SOC. 46, 141-152. 

in finite water depth. Appl. Ocean Res. 12, 1061 11. 

of finite depth: theory and experiment. J. Fluid Mech. 11, 529-549. 




